

Multigenerational Reproductive Toxicology (TR 547) and Toxicology and Carcinogenesis (TR 548) Studies of Ethinyl Estradiol in Sprague-Dawley Rats

Barry Delclos, NCTR/FDA Retha Newbold, NIEHS

Outline

- Background on NTP's endocrine disruptor studies and ethinyl estradiol
- Summary of dose range finding study (data presented in TR 547)
- Multigeneration study results (TR 547)
- Chronic study results (TR 548)

Background

- Endocrine Disruptor Evaluations Conducted Under NIEHS/NTP-FDA/NCTR Interagency Agreement
 - Evaluate long term effects of a series of compounds of varying potencies (genistein, nonylphenol, ethinyl estradiol, <u>vinclozolin</u>, <u>methoxychlor</u>)
 - Multigeneration reproductive studies with differing exposure windows across generations to evaluate the possibility of magnification of subtle effects across generations, reversibility
 - Include doses within likely human exposure range and/or below reported NOAEL
 - Chronic effects following exposure during different exposure windows
 - Original plan called for testing of pure compounds with consideration of subsequent testing more complex mixtures (e.g. soy extract, chlorinated hydrocarbons identified in human breast milk)

Background – Ethinyl Estradiol (EE₂)

- Potent synthetic estrogen primarily used as the estrogenic component of oral contraceptives due to oral bioavailability
- Found as contaminant in aquatic environment
- Somewhat selective for ERα
- Selected as potent estrogen for comparison with the weaker estrogens (genistein, p-nonylphenol) tested

Ethinyl Estradiol Metabolism (Partial)

Dose Range Finding Study Design

- Test Animal: CD (Sprague-Dawley) rat (NCTR colony)
- Exposure Window: GD 7 through PND 50/63/77
- Route of Exposure: Diet, Purina 5K96
- Control and 6 doses (0, 0.1, 1, 5, 25, 100, and 200 ppb) for reproductive study, control and 3 doses for other endpoints
- Five litters per dose group, standardized litters (4 pups/sex/litter)
- Goal: To select doses causing reproductive tract effects in pups that would not be likely to severely impair reproduction in the F₁ generation of the multigeneration study

Summary of EE₂ effects – Reproductive DRF Study (0, 0.1, 1, 5, 25, 100, 200 ppb)

Lowest Effective Dose (ppb)	Observation		
5	Males: preputial separation acceleration, dorsolateral prostate weight increase		
25	Females: Males:	vaginal opening acceleration (trend) mammary hyperplasia	
100	Females:	decreased dam body weight and feed consumption, birth weight decrease, anestrus (ovary) birth weight decrease, spermatocyte/spermatatid degeneration, depletion of secretory material (seminal vesicles), mineralization (renal tubules)	
Females: 200 Males:		Pup body weight and food consumption/ decrease; vaginal opening acceleration; ovary weight decrease, liver weight (adjusted for body weight) increase; vaginal atrophy, mucocyte metaplasia, and dystrophy Preputial separation, delay; testis and ventral prostate weight/ decrease; pituitary weight (adjusted for body weight)/ increase; pup body weight and food consumption/ decrease; testicular spermatid head count decrease	

Multigenerational Reproductive Toxicology Study of Ethinyl Estradiol in Sprague-Dawley Rats

TR 547

Multigeneration Study Design

- 0, 2, 10, and 50 ppb in Purina 5K96 (soy-, alfalfa-free) diet to NCTR CD (Sprague-Dawley) rats
- Dosing (reproductive phase, terminated PND 140 in all generations)
 - F₀: from 28 days prior to mating to PND 140
 - F₁, F₂: from conception to sacrifice at PND 140
 - F₃: from conception through weaning at PND 21
 - F₄: no exposure
- 35 or 40 (40 in F₂ only) Breeding pairs per dose group, animals from 25 litters per dose group randomly selected for evaluation

Multigeneration Dosing Scheme

^{*} F₄ generation was mated as F₀ to F₃ to produce F₅ litters

Approximate Ingested Dose (Mean μg EE₂/kg body weight ± SEM)

Dietary Concentration Ethinyl Estradiol

	2 ppb	10 ppb	50 ppb	
Males	0.1 ± 0.01	0.7 ± 0.04	3.9 ± 0.2	
Females	0.2 ± 0.01	1.1 ± 0.1	5.8 ± 0.3	

Comparison with human EE₂ exposure from oral contraceptives

- Approximate daily dose of EE₂ from oral contraceptives: 0.3 0.6 μg/kg
- Bioavailability is lower in rats than in humans due to more extensive metabolism
- Under the conditions of the present study, serum levels were not measurable in rats using an LC/MS method with a limit of detection of 10 pg/ml (Twaddle et al., J. Chromatogr. B 793: 309 – 315, 2003)
 - $-\,$ A 1 mg/kg gavage dose gave a C_{max} of 900 pg/ml and an AUC of 2800 pg x h / ml with a $t_{1/2}$ of 6 h in female rats
- For comparison, a pharmacokinetic study in premenopausal women with a single dose of 1.1 μ g EE₂/kg gave a C_{max} of 245 pg/ml and an AUC of 2,365 pg x h / ml with a t_{1/2} of 17 h (Scheffler et al., Clin. Pharmacol. Ther. 65: 483 490, 1999).

Body Weight and Food Consumption

	Generation						
Endpoint	F_0	F ₁	F_2	F_3	F ₄		
Body Weight							
Females							
Preweaning	NA	↓ (50)	↓ (50)	↓ (50)	_		
Postweaning	↓ (10, 50)	↓ (50)	↓ (50)	-	-		
Males							
Preweaning	NA	↓ (50)	↓ (50)	↓ (50)	-		
Postweaning	↓ (50)	↓ (50)	↓ (2, 10, 50)	-	-		
Feed Consumption							
Females	↓ (2)	-	↓ (50)	↑(10, 50)	-		
Males	↓ (2, 10)	↓ (2)	↓ (2, 10, 50)	-	-		

Ethinyl Estradiol Multigeneration Study

Endpoint	F ₀	F ₁	F ₂	F ₃	F ₄
Accelerated Vaginal Opening	NA	50	50	50	-
Aberrant/prolonged cycles 5 wks old	NA	2, 10, 50	50	-	-
Aberrant cycles 20 wks old	-	-	-	-	-
Renal tubule mineralization, Males PND 140	-	50	50	-	-
Male mammary hyperplasia PND 140	50	2, 10, 50	10, 50	50	-

NA = not applicable; "-" = no significant effect

Age at Vaginal Opening

Body Weight at Vaginal Opening

Vaginal Cytology Data from EE₂ Multigeneration Study

- F₁-F₄: 14 consecutive days from 3 days after vaginal opening
- F₀-F₄: 10 consecutive days prior to necropsy (PND 130-140, breeders, after delivering and nursing litters)
- In subsequent slides, abnormal cycle defined as 4 or more days of diestrus or 3 or more days of estrus in a 5 day period

% Abnormal Cycles - Estrus and Diestrus After Vaginal Opening

% Abnormal Cycles - Diestrus and Estrus Before Sacrifice

Length of Cycle After Vaginal Opening

Length of Cycle Before Sacrifice

Male endpoints

- No consistent effects on spermatogenesis
- No consistent effects on markers of male puberty
- No effects on prostate weights or histology; no consistent effects on weights or histology of other male reproductive tract organs
- Stimulation of male mammary gland hyperplasia and mineralization of renal tubules

Male Mammary Gland Hyperplasia Alveolar/Ductal, PND 140

Male Mammary Gland Hyperplasia Alveolar, PND 140

Male Mammary Gland Hyperplasia Ductal, PND 140

Male Kidney

Renal Tubule Mineralization, PND 140

Conclusions (1): Multigeneration Study (TR 547)

- Reproductive toxicity evidenced by:
 - Accelerated time and/or lower body weights at vaginal opening (F₁, F₂, F₃)
 - Increased aberrant cycles and/or length of cycle (F₁, F₂)
 - Male mammary gland alveolar/ductal hyperplasia (F₀-F₃)

Conclusions (2): Multigeneration Study (TR 547)

- Other effects
 - Increased renal tubule mineralization in males (F₁ and F₂)
 - Decreased body weight gains in both sexes (F₀, F₁, F₂, F₃)
- Effects more prominent in continuously exposed generations
- Majority of effects at the high dose tested (50 ppb), but some significant effects (F₁: male mammary hyperplasia, prolonged cycle; F₂: male body weight) were observed at the lowest dose (2 ppb)
- With the exception of marginal increase in male mammary alveolar hyperplasia, no evidence for carryover or magnification of effects